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A seller is selling J identical objects and n buyers participate in the
auction. In an auction mechanism M

e Each buyer / samples values v; ~ D;
e Each buyer / reports bid b;
e Seller decides allocation x € {0,1}", s.t. ||x||; < J

e Seller charges each buyer i payment p;
Expected Revenue of M on D=D; x D, x --- x D,

Rev(M; D) := Eyup [Y.7; pi(V)]



Revenue Maximizi ction

Myerson's Auction [19] characterizes the revenue maximizing auction
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Figure 1: Seller knows the value distribution



Revenue Maximizing Auction

Fixing a distribution D, given a value profile v Myerson’s auction

. 1—Fp.(v; . .
calculates virtual values ¢;(v;) = v; — 7 f;f)'), and decides allocation
(Vi

x(v)

argmax]E\,ND[Z di(vi)xi(v)]

i=1

Let ¢;(v;) be sorted in decreasing order, then i is allocated if i < J and
@i(v;) > 0. The payment charged is

max {7 (dur1(vss1)), ¢ 1(0)}

We refer to the expected revenue obtained by Myerson's as OPT



Learning from samples

Maximize revenue when that distribution is unknown but some small
number of samples are available [9, 4, 2, 6, 17, 3, 18, 11, 5, 10]
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Figure 2: Seller has samples



Iterative learning setting

We consider an iterative setting similar to Liu et al. [14]
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Iterative learning setting

We consider an iterative setting similar to Liu et al. [14]
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e Seller wants to maximize revenue and thus wants to learn from the
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Challenge

e Seller wants to maximize revenue and thus wants to learn from the
buyers

e Buyer wants to maximize their total utility over all the rounds they
participate in the auctions

e Buyers can misreport to gain more utility in the future.



Reserve Prices vs Optimal Auctions

Liu et al. [14] consider only reserve price auctions, and in general reserve
price revenue cannot approximate the Myerson's Revenue. We compete
with Myerson's revenue.

Large Market Assumption

Similar to [14], we assume that each buyer participates in at most k
rounds.
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Differential Privacy

Bound the “maximum amount” that one person’s data can change the
output of a computation.

Differential Privacy Dwork et al. [7]

An algorithm A : Z" — R is (e, §)-differentially private if for every pair
of neighboring databases Z, Z’ € Z", and for every subset of possible
outputs S C R,

PLA(Z) € 8] < exp(€) PLA(Z) € S] + 6.
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e Tree aggregation

e Exponential Mechanism
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Private Partial Sums

Let Z = (wy, wy, -+, wr) be a set of vectors we want to calculate
S Z::1 w; for all t privately.

Naive Approach

Add noise to each partial sum S, as each vector appears in O(T)
partial sums, to get (e, d)-differential privacy over the stream of partial
sums we need to add O(@) noise to each S;

11



Tree based aggregation (Jain et al. [12], Dwork et al. [8])

Using a binary index tree, we can calculate the stream of partial sums
(¢, &)-differentially privately by adding only O(@) noise
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Using a binary index tree, we can calculate the stream of partial sums
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Utility-Approximate BIC Online Auction

Algorithm 1: Utility-Approximate BIC Online Auction
Parameters: discretization 3, privacy ¢, upper bound on support h,

num. of rounds T

Initialize: H;, < Uniform(0, h) for i =1,--- ,n
fort=1,---, T do
Receive bid profile vi = (vi¢, ..., Va), rounded down to integer
multiple of g

Run Myerson with H’;_; as prior and v; as bid for
allocations/payments.

fori=1,...,ndo
| Update H, via two-fold tree aggregation, giving as input v; ;

end

end

13



Two Tree aggregation

To compute H; ¢(u), the empirical CDF at value u, we need only count

the number of samples from v; 1, -- -, v;; which are less than u, i.e.,
o) = Do Mvir S0} 350, S 1A 1) < vir < 62)
1t - -
’ t t

Two-fold tree aggregation [14] allows us to privately maintain these
cumulative sums for all points u € {5,203, , h} in the support of our
distribution by summing over the two axes: u and t which effectively
results in adding Gaussian noise with o = @(M) to H; +(u)

14



Differential Privacy Guarantee

Theorem

The stream of estimates {H';}_; maintained by Algorithm 1 is
(e, €/ T)-differentially private with respect to the stream of input bids

{Vt}thl-

Our algorithm is not differentially private in its selection of allocations
and payments in round t. However, the information the mechanism
carries forward (namely, the estimated empirical distribution) is
maintained in a differentially private manner.

15



Incentive Guarantee

Definition (7-utility-approximate BIC)

A mechanism is 7 utility-approximately Bayesian incentive compatible if
the strategy profile where every agent bids truthfully in every history is

an n-approximate Perfect Bayesian equilibrium.

16



Incentive Guarantee

Using the fact that we use Myerson's allocation and payment rule in each
fixed round t and the privacy of our estimates, we can show that:

Theorem (Incentive Guarantee for Algorithm 1)

Algorithm 1 is khe (2 + +)-utility approximate BIC when € < 1.

17



Revenue Analysis

To analyse the expected revenue we show three parts

1. If two value distributions are close then any reasonable mechanism

achieves similar revenue on the two distributions
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Revenue Analysis

To analyse the expected revenue we show three parts

1.

If two value distributions are close then any reasonable mechanism
achieves similar revenue on the two distributions

The differentially private estimates maintained by Algorithm 1 are
close to the true value distributions

The loss in revenue due to discretization is bounded

18



Similar Revenue on Similar Distributions

Theorem (Similar revenue on similar Distributions)

Let M be a competitive mechanism, and let D and D be two product
distributions of values such that for every bidder i, D; and D; are
T-close, i.e ||Dj — Dj||oc < 7. Then the expected revenue of M on D is
within an additive 2n®ht of the revenue from M on D. That is,
|Rev(M; D) — Rev(M; D)| < 2n?hr.
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Estimates are close

Using Dvoretzky-Kiefer-Wolfowitz (Massart [15]) inequality and the
variance of our added Gaussian noise, we show that

Theorem

After t rounds Algorithm 1, it holds with probability at least 1 — « that
|Hi . = Di|| <7 foreveryieln],

where D! is D; rounded down by 3

| ﬂ
Y = Oita +%1/Iog%|og Ty/2log (%) and
h h
8log T log = T log T log =
o= = 8 \/ In = B
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Discretization doesn’t hurt too much

Using results of Devanur et al. [5], we show that

Lemma ([5] Discretization loss)

As D’ is the rounding down of D to the closest multiple of 3,
Rev(M,; D) > OPT — BJ where M, is the optimal mechanism for
D'

21



Revenue Guarantee

Combining all the steps, we can show that

Theorem (Overall revenue Guarantee)

With probability at least 1 — «, the average expected revenue obtained
by Algorithm 1 for T rounds satisfies

Iog(%) N 1

> — BJ — 4hn?0 —
Rev> OPT — 5J — 4hn“ O T T

for regular distributions D and ¢ < 1.

Note that if we set 8 = o(1) in term of T, we can achieve sublinear
approximation.

22
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Introduction

In this section we introduce a stronger notion of Incentive compatibility
called 7n-bid-approximate BIC

Definition (7-bid-approximate BIC)

A mechanism is 1 bid-approximate BIC if 3 an exact PBE where each
bidder bids within 7 of their value in every history.

23



Punishing Mechanism

Buyers may have incentive to misreport their bids to gain more utility,
thus to ensure that there is a penalty for misreporting today that may
discourage the buyers from misreporting, we use a punishing mechanism.

Algorithm 2: Strictly Truthful
Input: Bid profile b,
Select a subset S C [n] of size J uniformly at random
Select a price p € [0, h] uniformly at random
for Eachs € S do
if bs; > p then allocate item to s and charge payment p ;

end

24



Punishing Mechanism

25



Punishing Mechanism

Lost utility

O O O
b 14 v
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Punishing Mechanism

Negative utility

O O
v p

Sl
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mate BIC Online Auction

Algorithm 3: Bid-approximate BIC Online Auction

Parameters: discretization 3, privacy €, upper bound on support h, num. of
rounds T

Initialize: H/, < Uniform(0, h) for i =1,--- ,n
fort=1,---,T do
Receive vector of bids by = (b1 ¢, ..., bn,t), rounded down to multiple of 3
With probability p¢ run mechanism Strictly Truthful(b;)
else
fori=1,...,ndo
‘ Use HI.’,t_1 to calculate ¢; ¢(bj ¢)
end

Use exponential mechanism (Algorithm to select allocation x:(¢t(b))
Use Black box payments to calculate payments p:(b:).

end

fori=1,...,ndo
Update H,.’,t via two-fold tree aggregation, giving as input b; ;

end

end
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Exponential Mechanism

We recall that the allocations and payments in Algorithm 1 were not
differentially private, to achieve the stronger notion of incentive
compatibility, we need to add more privacy, thus we use exponential
mechanism ([16]) for allocation.

Exponential Mechanism McSherry and Talwar [16]

Given a virtual value profile ¢(b) the Exponential Mechanism
MEe(X, Q, ¢(b), €) chooses an allocation x € X’ with probability

P[ME(X, Q, Qs(b)7 6) = X] X exp %
where Q(¢(b),x) is called the quality score and we use

Q(é(b), x) = 3=iLq ¢i(bi)x.

27



Exponential Mechanism

Theorem

Exponential Mechanism Mg is e-differentially private and if x is
sampled by Mg then w.p 1 —f3
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Black Box mechanism

Black box payment (Archer et al. [1]) calculates expected payments for
buyer i only by looking at the bid for buyer i and accesses information
about other buyers’ bids only through the allocation rule.

Lemma (Black box payment)
Fix a distribution H';. Then, allocating according to the exponential
mechanism Mg and charging black-box payments yields expected

revenue on H'; equal to the expected virtual surplus of the allocation
selected by M.

29



Differential Privacy

Definition (Joint Differential Privacy [13])

An algorithm A : Z" — R" is (e, 0)-jointly differentially private if for
every i € [n], for every pair of i-neighbors Z,Z' € Z", and for every
subset S C R"1,

P[A(Z)_; € S] < exp(e) P[A(Z')_; € S] + 6.
If 6 =0, we say that A is e-jointly differentially private.
Lemma

Algorithm 3 is (3¢, 3¢/ T)-jointly differentially private in the bids of
bidders.

30



Incentive Guarantee

Using differential privacy, the guarantees from punishing mechanism, the
approximation guarantees of exponential mechanism and our distribution
estimation, we can show that

Theorem

Algorithm 3 in round t is n:-bid approximate BIC, i.e. in round t, any
bidder i with value v;; reports bid b;; which satisfies

Vie — Mt < bje < vir where ne = h,/%,
Ve = 7|°g(2h"/ﬁ°‘) + o(t) + ¢4 /log % log Ty /log (é’—;)

h h
8log T log = log T log =
7 = ﬁ\/ln 3 Bandéz%.
€

In simpler words, every buyer bids within n; = ¢ + O(t*1/4) of the

truthful bid for some small constant c.

31



Final Revenue

Using the bid approximate incentive compatibility result and the results
from the previous section, we can show that

Theorem (Overall revenue Guarantee)

With probability at least 1 — «, the average expected revenue obtained
by Algorithm 3 for T rounds satisfies

Rev> OPT —c' — O(T~/*%)

for some small constant c’.
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Questions?
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