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Introduction



Auctions

A seller is selling J identical objects and n buyers participate in the

auction. In an auction mechanism M

• Each buyer i samples values vi ∼ Di

• Each buyer i reports bid bi

• Seller decides allocation x ∈ {0, 1}n, s.t. ‖x‖1 ≤ J

• Seller charges each buyer i payment pi

Expected Revenue of M on D = D1 × D2 × · · · × Dn

Rev(M; D) := Ev∼D

[∑n
i=1 pi (v)

]
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Revenue Maximizing Auction

Myerson’s Auction [19] characterizes the revenue maximizing auction

Figure 1: Seller knows the value distribution
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Revenue Maximizing Auction

Fixing a distribution D, given a value profile v Myerson’s auction

calculates virtual values φi (vi ) = vi −
1−FDi

(vi )

fDi
(vi )

, and decides allocation

x(v)

argmax
x

Ev∼D[
n∑

i=1

φi (vi )xi (v)]

Let φi (vi ) be sorted in decreasing order, then i is allocated if i ≤ J and

φi (vi ) > 0. The payment charged is

max
{
φ−1
i (φJ+1(vJ+1)), φ−1

i (0)
}

We refer to the expected revenue obtained by Myerson’s as OPT
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Learning from samples

Maximize revenue when that distribution is unknown but some small

number of samples are available [9, 4, 2, 6, 17, 3, 18, 11, 5, 10]

Figure 2: Seller has samples
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Iterative learning setting

We consider an iterative setting similar to Liu et al. [14]
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Challenge

• Seller wants to maximize revenue and thus wants to learn from the

buyers

• Buyer wants to maximize their total utility over all the rounds they

participate in the auctions

• Buyers can misreport to gain more utility in the future.
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Reserve Prices vs Optimal Auctions

Liu et al. [14] consider only reserve price auctions, and in general reserve

price revenue cannot approximate the Myerson’s Revenue. We compete

with Myerson’s revenue.

Large Market Assumption

Similar to [14], we assume that each buyer participates in at most k

rounds.

8



Differential Privacy



Differential Privacy

Bound the “maximum amount” that one person’s data can change the

output of a computation.

Differential Privacy Dwork et al. [7]

An algorithm A : Zn → R is (ε, δ)-differentially private if for every pair

of neighboring databases Z ,Z ′ ∈ Zn, and for every subset of possible

outputs S ⊆ R,

P[A(Z ) ∈ S] ≤ exp(ε) P[A(Z ′) ∈ S] + δ.
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Differential Privacy

Tools we use from differential privacy:

• Tree aggregation

• Exponential Mechanism
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Private Partial Sums

Let Z = 〈w1,w2, · · · ,wT 〉 be a set of vectors we want to calculate

St =
∑t
τ=1 wτ for all t privately.

Naive Approach

Add noise to each partial sum St , as each vector appears in O(T )

partial sums, to get (ε, δ)-differential privacy over the stream of partial

sums we need to add Õ(
√
T
ε ) noise to each St
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Tree based aggregation (Jain et al. [12], Dwork et al. [8])

Using a binary index tree, we can calculate the stream of partial sums

(ε, δ)-differentially privately by adding only O( log T
ε ) noise
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Utility-Approximate Bayesian

Incentive Compatible Online

Auction



Utility-Approximate BIC Online Auction

Algorithm 1: Utility-Approximate BIC Online Auction

Parameters: discretization β, privacy ε, upper bound on support h,

num. of rounds T

Initialize: H ′i,0 ← Uniform(0, h) for i = 1, · · · , n
for t = 1, · · · ,T do

Receive bid profile vt = (v1,t , . . . , vn,t), rounded down to integer

multiple of β

Run Myerson with H′t−1 as prior and vt as bid for

allocations/payments.

for i = 1, . . . , n do
Update H ′i,t via two-fold tree aggregation, giving as input vi,t

end

end

13



Two Tree aggregation

To compute Hi,t(u), the empirical CDF at value u, we need only count

the number of samples from vi,1, · · · , vi,t which are less than u, i.e.,

Hi,t(u) =

∑t
τ=1 1{vi,τ ≤ u}

t
=

∑t
τ=1

∑u/β
z=1 1{β(z − 1) < vi,τ ≤ βz}

t

Two-fold tree aggregation [14] allows us to privately maintain these

cumulative sums for all points u ∈ {β, 2β, · · · , h} in the support of our

distribution by summing over the two axes: u and t which effectively

results in adding Gaussian noise with σ = Õ( log T log h/β
tε ) to Hi,t(u)
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Differential Privacy Guarantee

Theorem

The stream of estimates {H′t}Tt=1 maintained by Algorithm 1 is

(ε, ε/T )-differentially private with respect to the stream of input bids

{vt}Tt=1.

Our algorithm is not differentially private in its selection of allocations

and payments in round t. However, the information the mechanism

carries forward (namely, the estimated empirical distribution) is

maintained in a differentially private manner.
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Incentive Guarantee

Definition (η-utility-approximate BIC)

A mechanism is η utility-approximately Bayesian incentive compatible if

the strategy profile where every agent bids truthfully in every history is

an η-approximate Perfect Bayesian equilibrium.
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Incentive Guarantee

Using the fact that we use Myerson’s allocation and payment rule in each

fixed round t and the privacy of our estimates, we can show that:

Theorem (Incentive Guarantee for Algorithm 1)

Algorithm 1 is khε
(
2 + 1

T

)
-utility approximate BIC when ε < 1.
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Revenue Analysis

To analyse the expected revenue we show three parts

1. If two value distributions are close then any reasonable mechanism

achieves similar revenue on the two distributions

2. The differentially private estimates maintained by Algorithm 1 are

close to the true value distributions

3. The loss in revenue due to discretization is bounded
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Similar Revenue on Similar Distributions

Theorem (Similar revenue on similar Distributions)

Let M be a competitive mechanism, and let D and D̃ be two product

distributions of values such that for every bidder i , Di and D̃i are

τ -close, i.e ‖Di − D̃i‖∞ ≤ τ . Then the expected revenue of M on D is

within an additive 2n2hτ of the revenue from M on D̃. That is,

|Rev(M; D)− Rev(M; D̃)| ≤ 2n2hτ .
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Estimates are close

Using Dvoretzky-Kiefer-Wolfowitz (Massart [15]) inequality and the

variance of our added Gaussian noise, we show that

Theorem

After t rounds Algorithm 1, it holds with probability at least 1− α that∥∥H ′i,t − D ′i
∥∥
∞ ≤ γt for every i ∈ [n] ,

where D ′i is Di rounded down by β

γt =

√
log

n
α

2t + σ
t

√
log h

β logT

√
2 log

(
2hn
βα

)
and

σ =
8 log T log

h
β

ε

√
ln

T log T log
h
β

ε .

20



Discretization doesn’t hurt too much

Using results of Devanur et al. [5], we show that

Lemma ([5] Discretization loss)

As D′ is the rounding down of D to the closest multiple of β,

Rev(M∗D′ ; D′) ≥ OPT− βJ where M∗D′ is the optimal mechanism for

D′.
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Revenue Guarantee

Combining all the steps, we can show that

Theorem (Overall revenue Guarantee)

With probability at least 1− α, the average expected revenue obtained

by Algorithm 1 for T rounds satisfies

Rev ≥ OPT− βJ − 4hn2Õ

√ log( nT
α )

T
+

1

T ε


for regular distributions D and ε < 1.

Note that if we set β = o(1) in term of T , we can achieve sublinear

approximation.
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Introduction

In this section we introduce a stronger notion of Incentive compatibility

called η-bid-approximate BIC

Definition (η-bid-approximate BIC)

A mechanism is η bid-approximate BIC if ∃ an exact PBE where each

bidder bids within η of their value in every history.
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Punishing Mechanism

Buyers may have incentive to misreport their bids to gain more utility,

thus to ensure that there is a penalty for misreporting today that may

discourage the buyers from misreporting, we use a punishing mechanism.

Algorithm 2: StrictlyTruthful

Input: Bid profile bt

Select a subset S ⊆ [n] of size J uniformly at random

Select a price p ∈ [0, h] uniformly at random

for Each s ∈ S do

if bs,t ≥ p then allocate item to s and charge payment p ;

end
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Punishing Mechanism
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Punishing Mechanism
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Bid-approximate BIC Online Auction

Algorithm 3: Bid-approximate BIC Online Auction
Parameters: discretization β, privacy ε, upper bound on support h, num. of

rounds T

Initialize: H′i,0 ← Uniform(0, h) for i = 1, · · · , n
for t = 1, · · · ,T do

Receive vector of bids bt = (b1,t , . . . , bn,t), rounded down to multiple of β

With probability ρt run mechanism StrictlyTruthful(bt)

else

for i = 1, . . . , n do
Use H′i,t−1 to calculate φi,t(bi,t)

end

Use exponential mechanism (Algorithm to select allocation xt(φt(b))

Use Black box payments to calculate payments pt(bt).

end

for i = 1, . . . , n do
Update H′i,t via two-fold tree aggregation, giving as input bi,t

end

end
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Exponential Mechanism

We recall that the allocations and payments in Algorithm 1 were not

differentially private, to achieve the stronger notion of incentive

compatibility, we need to add more privacy, thus we use exponential

mechanism ([16]) for allocation.

Exponential Mechanism McSherry and Talwar [16]

Given a virtual value profile φ(b) the Exponential Mechanism

ME (X ,Q, φ(b), ε) chooses an allocation x ∈ X with probability

P[ME (X ,Q, φ(b), ε) = x] ∝ exp εQ(φ(b),x)
∆

where Q(φ(b), x) is called the quality score and we use

Q(φ(b), x) =
∑n

i=0 φi (bi )xi .
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Exponential Mechanism

Theorem

Exponential Mechanism ME is ε-differentially private and if x is

sampled by ME then w.p 1− β

Q(φ(b), x) ≥ max
x′∈X

Q(φ(b), x′)− O(
log( |X |β )

ε
)
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Black Box mechanism

Black box payment (Archer et al. [1]) calculates expected payments for

buyer i only by looking at the bid for buyer i and accesses information

about other buyers’ bids only through the allocation rule.

Lemma (Black box payment)

Fix a distribution H′t . Then, allocating according to the exponential

mechanism ME and charging black-box payments yields expected

revenue on H′t equal to the expected virtual surplus of the allocation

selected by ME .
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Differential Privacy

Definition (Joint Differential Privacy [13])

An algorithm A : Zn → Rn is (ε, δ)-jointly differentially private if for

every i ∈ [n], for every pair of i-neighbors Z ,Z ′ ∈ Zn, and for every

subset S ⊆ Rn−1,

P[A(Z )−i ∈ S] ≤ exp(ε) P[A(Z ′)−i ∈ S] + δ.

If δ = 0, we say that A is ε-jointly differentially private.

Lemma

Algorithm 3 is (3ε, 3ε/T )-jointly differentially private in the bids of

bidders.
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Incentive Guarantee

Using differential privacy, the guarantees from punishing mechanism, the

approximation guarantees of exponential mechanism and our distribution

estimation, we can show that

Theorem

Algorithm 3 in round t is ηt-bid approximate BIC, i.e. in round t, any

bidder i with value vi,t reports bid bi,t which satisfies

vi,t − ηt ≤ bi,t ≤ vi,t where ηt = h
√

8n2γt+6kε
ρtJ

,

γt =
√

log(2hn/βα)
2t + o(t) + σ

t

√
log h

β logT

√
log
(

hn
βα

)
,

σ =
8 log T log

h
β

ε

√
ln

log T log
h
β

δ and δ = ε
T .

In simpler words, every buyer bids within ηt = c + Õ(t−1/4) of the

truthful bid for some small constant c .
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Final Revenue

Using the bid approximate incentive compatibility result and the results

from the previous section, we can show that

Theorem (Overall revenue Guarantee)

With probability at least 1− α, the average expected revenue obtained

by Algorithm 3 for T rounds satisfies

Rev ≥ OPT− c ′ − Õ(T−1/4)

for some small constant c ′.
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Questions?
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