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Introduction



Ising Model

Given a graph G = (V ,E ) whose nodes are associated with external field
(θu)u∈V and edges with parameters (θu,v )(u,v)∈E , the Ising model defines
a probability distribution over x ∈ {±1}n

PDF of Ising model

p(x) =
1

Z (θ)
· exp

∑
i

θixi +
∑
(i,j)

xixjθi,j



θi on each vertex is also known as external fields.
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Problem 1 : Approximating
Ising Distribution



Problem setup

• Unknown Graph

• Polynomial samples from the stationary distribution

• No external fields

• θ∗ij > 0 ∀i , j
• Goal: Recover an Ising model whose distribution is close in TV

distance (or SKL) to the Ising distribution sampled from.
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Motivation: Lower bounds to recover the graph

• Given i.i.d samples x1, .., xN , ideally, we would like to recover the
graph structure and the associated edge weights.

• However, there is a information-theoretic lower bound - we need
atleast O (exp(d)) samples, where d is the maximum degree. See
[Santhanam and Wainwright, 2012]
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Problem Objective

This calls for a relaxation of our original goal. Can we instead just find
an approximation of the original Ising distribution p∗(x), i.e find another
Ising model whose distribution p(x) satisfies SKL(p||p∗) ≤ ε, where SKL
refers to symmetric KL divergence. Such a goal comes under proper
learning.

Symmetric KL Divergence

SKL(p||p∗) =
∑
i∈V

(θi − θ∗i ) (Ep[xi ]− Ep∗ [xi ])

+
∑
(i,j)

(θij − θ∗ij) (Ep[xixj ]− Ep∗ [xixj ]) ≤ ε
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Sufficient condition

Sufficient condition:
Ignoring external fields, the following simple condition that
∀ij ∈ E ,

∣∣θij − θ∗ij ∣∣ ≤ ε
n2 guarantees that SKL(p||p∗) ≤ ε
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Prior work

A recent paper by [Klivans and Meka, 2017] addresses this problem.

Approach: They pose the problem as learning a generalized linear model
(GLM): Given Ising samples with conditional mean functions of the form
P(xv |x−v ) = σ( ~θ∗v .x−v ), we want to recover ~θ∗v for all v .

Algorithm: Their algorithm termed Sparsitron is based on multiplicative
updates method but uses a novel loss function. This method is used to
achieve small squared loss and a further assumption that the given Ising
model is δ-unbiased makes strong recovery (parameters) possible.
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Continuing..

Results: To achieve ||θ − θ∗||∞ ≤ ε
n2 , they require:

Sample-complexity: N = O(n8λ2exp(λ)/ε4).(log(n3/ρε)), where λ upper
bounds ||θ∗v ||1 for all v and ρ is the probability of failure.

In the high-temperature regime, under the assumption that ||θ∗v ||1 = 1 for
all v , this effectively gives Õ

(
n8

ε4

)
However, information-theoretically, finding a SKL approximation
only requires O(n2/ε2) samples in the high-temperature regime

Can we do better?
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Our approach: Logistic Regression

For a given vertex v , the marginal distribution given all the other labels
x−v is

p(xv |~θv , x−v ) =
exp(

∑
u,u 6=v θv ,u · xu · xv )

exp(
∑

u,u 6=v θv ,u · xu · xv ) + exp(−
∑

u,u 6=v θv ,u · xu · xv )

Hence if we have N iid samples, and if ~xv ∈ {±1}N is the labels for v ,
and X−v ∈ {±1}n−1×N

Likelihood

Lv (~θv ) = p(~xv |~θv ,X−v ) =
N∏
i=1

exp(2
∑

u,u 6=v θv ,u · x
(i)
u · x (i)

v )

1+ exp(2
∑

u,u 6=v θv ,u · x
(i)
u · x (i)

v )

Which would serve as the likelihood function for logistic regression.
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Negative log-likelihood minimization

Just like in logistic regression, we perform negative log likelihood (NLL)
minimization

Negative log likelihood

NLLv (~θv ) = −2
N∑
i=1

x (i)
v
~θv

T
X

(i)
−v +

N∑
i=1

log (1+ exp(2x (i)
v
~θv

T
X

(i)
−v ))

Gradient

∇NLL = −2X−v (I − D)xv

where D is a diagonal matrix with Di,i =
exp(2x (i)

v
~θv

T
X

(i)
−v )

1+exp(2x (i)
v
~θv

T
X

(i)
−v )
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Hessian

Hessian

∇2NLL = X−vD
′
XT
−v

where D ′ is a diagonal matrix with D ′i,i =
4e2x(i)

v
~θTv X

(i)
−v(

1+e
2x(i)

v
~θTv X

(i)
−v

)2

Notice that this is a PSD matrix and thus, the objective is convex. This
allows us to exploit convex optimization tools (aka Gradient Descent).
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Technical Questions

• Understanding spectral properties of the Hessian so as to check for
strong convexity and smoothness. This might be of independent
interest.

• Under what conditions is the NLL objective function Lipschitz?

• Study how minimizing the NLL objective might give us strong
recovery guarantees in the parameter space.

• What set of assumptions about the temperature and the underlying
graph are needed for the above?

• How does regularization help?
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Problem 2 : Learning the sign
form one sample



Problem setup

• Unknown Graph

• One sample

• No external fields

• θij = θ ∀i , j i.e. edge parameter is the same for all edges.

• Goal: Recover the sign of θ
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Hurdles

Can’t do it for general Graphs (even with constant probability)
For example :

• Star Graph K (1, n)

• Complete Bipartite Graph where one side is constant sized : K (c , n)

• Path on cliques

We can learn on K (n, n) graphs!
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Approaches and Experiments

Given these results : Try to solve the problems on restricted graph classes.

Idea 1 : G (n, p) graphs.

Idea 2 : Graphs that are ’well connected’.

Motivation : If there are a lot of pieces of the graph that don’t interact
much with each other, then|

∑n
i=1 Xi | is close to zero in both cases θ > 0

and θ < 0. For example a path of cliques.

Preliminary Experiments
In random G (n, p) graphs, for θ < 0,

∑
Xi is close to zero and for

θ > 2/np, |
∑

Xi | is close to n.

As a possible explanation, θ ≤ 1/np is the ’high temperature’ regime or
Dobrushin’s condition is satisfied. There might be a transition behaviour
at this point.
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Random Cluster(FK) model

• Introduced by Fortuin and Kastelyn, for θ > 0, this is another way of
sampling from the Ising model.

• Sample a subset S ⊆ E of edges of the input graph G with
probability proportional to

p|S|(1− p)|E |−|S|qk(S)

where k(S) is the number of connected components in (V ,S).

• Assign each connected component a label uniformly at random from
1 . . . q.

• They prove, this distribution is exactly same as the Potts model for
q states. Specifically for q = 2 this is exactly the Ising distribution.
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Using the FK model : Further Approaches

For the restricted classes of graphs mentioned above :

• Prove a lower bound on the size of the largest component.

• Prove that the other components are somewhat small.

• Conclude that in expectation, |
∑

Xi | size of largest component.

• Conclude separately that for θ < 0, |
∑

Xi | is close to zero. (Some
preliminary experimental and theoretical evidence suggesting this.)

• Deduce sign of θ depending on whether
∑

Xi is small or large.
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Problem 3 : Logistic Regression
on Networks



Model

Ising model and features

• Graph G (V ,E ) with n × n adjacency matrix A (Known).

• Features ~yv ∈ Rm (Known, m is constant).

• Parameters β ∈ R+ and ~θ ∈ Rm (Unknown).

Given an assignment ~σ : V → {−1,+1}, we define the following
probability distribution (on the 2n configurations):

Pr[{]τ = σ} =
exp

(∑
v∈V (

~θ> · ~yv )σv + β~σ>A~σ
)

Z (G )
(1)

where Z (G ) is the partition function of the system (i.e., the
renormalization factor).

Problem: We would like to infer ~θ, β
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Naive approach for bounded degree (∆) graphs

• Find an independent set I of size at least n
∆ .

• Each v ∈ I , conditioned on its neighbors has the following marginal:

Pr[{]τv = 1|
∑

u∈N(v)

σu = c} = 1

1+ e−2(~θ,β)>(~yv ,c)
. (2)

• To infer β, θ, we reduce the problem to classic logistic regression
(independent “samples"). ~θ can be inferred but the signal for β
might be lost.

Main challenges!

• Go beyond bounded degree graphs (dense).

• Use the information from all the vertices.

• Beat the
√

∆
n consistency that will occur.
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Questions?
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Thank You!
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