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Introduction



Ising Model

Given a graph G = (V, E) whose nodes are associated with external field
(0u)uev and edges with parameters (6,,,)(u,v)ce. the Ising model defines
a probability distribution over x € {£1}"

PDF of Ising model
1
p(X) = m - exp E,_ 0;x; + (EJ) X,'Xj@,‘J

0; on each vertex is also known as external fields.



Problem 1 : Approximating
Ising Distribution



Problem setup

e Unknown Graph

Polynomial samples from the stationary distribution

No external fields
9;; >0 Vi,j

e Goal: Recover an Ising model whose distribution is close in TV

distance (or SKL) to the Ising distribution sampled from.



Motivation: Lower bounds to recover the graph

e Given i.i.d samples x, .., xy, ideally, we would like to recover the
graph structure and the associated edge weights.



Motivation: Lower bounds to recover the graph

e Given i.i.d samples x, .., xy, ideally, we would like to recover the
graph structure and the associated edge weights.

e However, there is a information-theoretic lower bound - we need
atleast O (exp(d)) samples, where d is the maximum degree. See
[Santhanam and Wainwright, 2012]



Problem Objective

This calls for a relaxation of our original goal. Can we instead just find
an approximation of the original Ising distribution p*(x), i.e find another
Ising model whose distribution p(x) satisfies SKL(p||p*) < ¢, where SKL
refers to symmetric KL divergence. Such a goal comes under proper
learning.

Symmetric KL Divergence

SKL(pllp*) = > _(6i — 67) (Ep[xi] — Ep- [xi])

eV

+ Z i — 05) (Eplxixj] — Epe[xixj]) < €



Sufficient condition

Ignoring external fields, the following simple condition that
Vij € E, |9,-j - 0,’;| < -5 guarantees that SKL(p||p*) < €



Prior work

A recent paper by [Klivans and Meka, 2017] addresses this problem.

Approach: They pose the problem as learning a generalized linear model
(GLM): Given Ising samples with conditional mean functions of the form
P(x,|x_v) = o(6%,.x_,), we want to recover 6%, for all v.

Algorithm: Their algorithm termed Sparsitron is based on multiplicative
updates method but uses a novel loss function. This method is used to
achieve small squared loss and a further assumption that the given Ising
model is §-unbiased makes strong recovery (parameters) possible.



Results: To achieve [|0 — 0*||o < -5, they require:

Sample-complexity: N = O(n8\2exp(\)/e*).(log(n3/pe)), where X upper
bounds ||0%]|1 for all v and p is the probability of failure.

In the high-temperature regime, under the assumption that ||6;||; = 1 for
all v, this effectively gives 0 (:;)

However, information-theoretically, finding a SKL approximation
only requires O(n?/e?) samples in the high-temperature regime

Can we do better?



Our approach: Logistic Regression

For a given vertex v, the marginal distribution given all the other labels

X_, Is

exp(zu’u;év ev.,u c Xyt Xv)
exp(zu7u¢V ev,u C Xy - Xv) + eXp(— Eu,u#v 9\,’” -« Xy - Xv)

p(Xv‘97/7X—v) -

Hence if we have N iid samples, and if x;, € {£-1}" is the labels for v,
and X_, € {£1}n—1xN

Likelihood

N exp22uu#v viu X’S) X‘(’i))
H (f))

L,(6,) = p(x|0s, X_,) =
i=1 1+ exp(2 Zu UV v u Xl(l) Xy

Which would serve as the likelihood function for logistic regression.



Negative log-likelihood minimization

Just like in logistic regression, we perform negative log likelihood (NLL)
minimization
Negative log likelihood

N

N
NLL,(6,) = =23 x6, XU + 3" log (1 + exp(2x6; " X))
i=1 i=1

Gradient

VNLL = —2X_,(I — D)x,

exp(2x\(/")9: 7—XS)V)

where D is a diagonal matrix with D; ; = ————=7—(5~
’ 1+exp(2xy76, X21)



Hessian

Hessian

VANLL = X_,D'XT,

2aT X0,

__4e v Vv
(N gT x(D \ 2
<1+ezxv a7 X7V>

Notice that this is a PSD matrix and thus, the objective is convex. This

where D’ is a diagonal matrix with D! ; =

allows us to exploit convex optimization tools (aka Gradient Descent).
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Technical Questions

e Understanding spectral properties of the Hessian so as to check for
strong convexity and smoothness. This might be of independent

interest.
e Under what conditions is the NLL objective function Lipschitz?

e Study how minimizing the NLL objective might give us strong
recovery guarantees in the parameter space.

e What set of assumptions about the temperature and the underlying
graph are needed for the above?

e How does regularization help?
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Problem 2 : Learning the sign
form one sample



Problem setup

e Unknown Graph

One sample

No external fields

0;j =6 Vi,jie. edge parameter is the same for all edges.

e Goal: Recover the sign of ¢
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Can’t do it for general Graphs (even with constant probability)

For example :

e Star Graph K(1,n)
e Complete Bipartite Graph where one side is constant sized : K(c, n)

e Path on cliques

We can learn on K(n, n) graphs!
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Approaches and Experiments

Given these results : Try to solve the problems on restricted graph classes.
Idea 1: G(n,p) graphs.
Idea 2 : Graphs that are 'well connected'.

Motivation : If there are a lot of pieces of the graph that don't interact
much with each other, then| "7 | X;| is close to zero in both cases § > 0
and 0 < 0. For example a path of cliques.

Preliminary Experiments

In random G(n, p) graphs, for # <0, > X; is close to zero and for
0 >2/np, | > Xi| is close to n.

As a possible explanation, 6 < 1/np is the "high temperature’ regime or
Dobrushin’s condition is satisfied. There might be a transition behaviour
at this point.
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Random Cluster(FK) model

e Introduced by Fortuin and Kastelyn, for § > 0, this is another way of
sampling from the Ising model.

e Sample a subset S C E of edges of the input graph G with
probability proportional to

pISI (1 — p)IEI=I1S1 g(s)

where k(S) is the number of connected components in (V,S).
e Assign each connected component a label uniformly at random from
1...q.

e They prove, this distribution is exactly same as the Potts model for
q states. Specifically for g = 2 this is exactly the Ising distribution.

15



Using the FK model : Further Approaches

For the restricted classes of graphs mentioned above :

e Prove a lower bound on the size of the largest component.

e Prove that the other components are somewhat small.

Conclude that in expectation, | > X;| size of largest component.

Conclude separately that for 6 < 0, | > Xj| is close to zero. (Some
preliminary experimental and theoretical evidence suggesting this.)

Deduce sign of 6 depending on whether > X; is small or large.

16



Problem 3 : Logistic Regression
on Networks




Ising model and features

e Graph G(V, E) with n x n adjacency matrix A (Known).
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Ising model and features

e Graph G(V, E) with n x n adjacency matrix A (Known).
e Features y, € R™ (Known, m is constant).

e Parameters 8 € R, and § € R™ (Unknown).

Given an assignment ¢ : V — {—1,+1}, we define the following
probability distribution (on the 2" configurations):

exp Zve (m'yv)gv+ﬂ5TA5
Pr{lr = o} = (Zer T ) 1

where Z(G) is the partition function of the system (i.e., the
renormalization factor).
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Ising model and features

e Graph G(V, E) with n x n adjacency matrix A (Known).
e Features y, € R™ (Known, m is constant).

e Parameters 8 € R, and § € R™ (Unknown).

Given an assignment ¢ : V — {—1,+1}, we define the following
probability distribution (on the 2" configurations):

exp Zve (m'yv)gv+ﬂ5TA5
Pr{lr = o} = (Zer T ) 1

where Z(G) is the partition function of the system (i.e., the
renormalization factor).

Problem: We would like to infer g,ﬁ
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Naive approach for bounded degree (A) graphs

e Find an independent set / of size at least 3.
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Naive approach for bounded degree (A) graphs

e Find an independent set / of size at least 3.

e Each v €/, conditioned on its neighbors has the following marginal:

Priflr =1 3 ou=c}= L

ueN(v) 14 e—20.8)T(Fe)

()
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Naive approach for bounded degree (A) graphs

e Find an independent set / of size at least %.

e Each v €/, conditioned on its neighbors has the following marginal:

Priflr =1 3 ou=c}= -

ueN(v) 14 20,87 Fe)

()

e To infer 3,0, we reduce the problem to classic logistic regression
(independent “samples"). 6 can be inferred but the signal for 3
might be lost.

Main challenges!

e Go beyond bounded degree graphs (dense).

18



Naive approach for bounded degree (A) graphs

e Find an independent set / of size at least %.

e Each v €/, conditioned on its neighbors has the following marginal:

Priflr =1 3 ou=c}= -

ueN(v) 14 20,87 Fe)

()

e To infer 3,0, we reduce the problem to classic logistic regression
(independent “samples"). 6 can be inferred but the signal for 3
might be lost.

Main challenges!

e Go beyond bounded degree graphs (dense).

e Use the information from all the vertices.

18



Naive approach for bounded degree (A) graphs

e Find an independent set / of size at least %.

e Each v €/, conditioned on its neighbors has the following marginal:

Priflr =1 3 ou=c}= L

ueN(v) 14 20,87 Fe)

()

e To infer 3,0, we reduce the problem to classic logistic regression
(independent “samples"). 6 can be inferred but the signal for 3
might be lost.

Main challenges!

e Go beyond bounded degree graphs (dense).
e Use the information from all the vertices.

e Beat the 1/% consistency that will occur.
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Questions?



Thank Youl!
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