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INTRODUCTION

We study the problem of designing revenue
maximizing repeated auctions.

Traditional auction design requires knowl-
edge of a prior distribution over buyer valuations
and constructs an auction as a function of that
prior to maximize some objective. For the rev-
enue objective, Myerson’s auction (Myerson81)
characterizes the Bayesian-optimal auction.
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Known Priors (Eg Myerson81)

Existing work has largely focused on the com-
putational and sample complexity of the task ig-
noring the possibility that bidders we learn from
show up in the learned auction.
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Sample Complexity results (Eg CR15, DHP15, MR16)

Our work focuses on an multi round setting

1. The seller does not know the prior and
learns from the samples

2. Strategic bidders show up in multiple
rounds

bt = [bi, b}, bi]
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Multiple rounds, strategic bidders show up multiple times
(Eg LHW18, ACKMT19)

ASSUMPTION

No bidder participates in more than k£ rounds
of the T-round auction.

SETTING

We consider a T-round auction, where a seller
sells a supply of J identical items each round.
n different populations of bidders & one bidder
from each population ¢ participates in each round
t with value v; ; for winning an item. Each sam-
ple from population i is distributed according to
a distribution D;.

KEY IDEAS

1. Ditterential Privacy: Control the impact of any
individual buyer’s strategy on her future utility

2. Similar revenue on similar distributions: We
show thatif ||D — D’||oc < 7 then |Rev(M;D) —
Rev(M; D")| < O(n°7)

DP DISTRIBUTION ESTIMATION

We use a 2 fold tree based aggregation proto-
col (LHW18) with appropriate noise to estimate

the value distributions of the bidders in a (¢, ¢/T)
differentially private manner.
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Differential private empirical distribution estimation
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EXPONENTIAL MECHANISM

Exponential Mechanism (MT07) 1is an
e DP algorithm to sample allocation x as

Plx| o< exp EQ((’BXD)’X) where the quality function

Q(d(b),x) we useis Y1 di(bi)z;

BLACK BOX PAYMENTS

We use a black box payment rule from
APTTO04 to decide payments which are truthful
in expectation and bidder ¢’s payment depends
on her own bid, and the differentially private es-
timates of the distributions but does not depend
on other’s bids.
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LEARNING AUCTIONS WITH ROBUST INCENTIVE GUARANTEES ORFRIIN

UTILITY-APPROXIMATE BIC ONLINE AUCTION

Algorithm 1: Utility-Approx BIC Online Auc-
tion

Parameters: discretization (3, privacy e,
upper bound h, num. of rounds T’

Initialize: H, < Uni(0,h)fori=1,---,n

fort=1,---.,T do

Receive bid profile b; rounded down to
multiple of 3

Run Myerson with H';_; as prior and b
as bid for allocations/payments.

for:=1,....,ndo

Update H; , via two-fold tree
aggregation

end
end

Results:

Theorem 1. Algorithm 1 is khe (2 + +)-utility ap-
proximate BIC, i.e for each bidder 1, if everyone else
bids truthfully then truthful bidding is an approxi-
mately utility-maximizing behavior for bidder 1.

Theorem 2. With probability at least 1 — «, the av-
erage expected revenue obtained by Algorithm 1 for T

rounds > OPT — 3J — 4hn?O <\/log(%) 1 >

T Te
for reqular distributions D and e < 1.

BID-APPROXIMATE BIC ONLINE AUCTION

Algorithm 2: Bid-approx BIC online Auction

Parameters: discretization [, privacy e,
upper bound h, num. of rounds T’

Initialize: H;, < Uni(0,h)fori:=1,---,n

fort=1,---,T do

Receive vector of bids b, = (b1 ¢, . ..
rounded down to multiple of 3

With probability p; select a random
allocation and reserve price

else

fori:=1,...,ndo

Use H; , ; to calculate

1—H; ,_1(b1,¢)
¢z’,t(b’i,t) — bl,t hfi,tt(bi,t)

end

Use exponential mechanism to select
allocation

Use Black box payments to calculate
payments p;(b;).

end

for:=1,....,ndo

Update H; , via two-fold tree
aggregation

end
end

y bn,t)

Results:

Theorem 3. Algorithm 2 is is n.-bid approximate
BIC in round t for n;, = ¢ + O(t~'/*) for small con-
stants c', 1.e there exists a Bayesian Nash Equilibrium
where in every round t, every bidder bids within 1y of
their truthful value.

Theorem 4. With probability at least 1 — «, the av-

erage expected revenue obtained by Algorithm 2 for T

rounds > OPT — ¢’ — O(T /%) for small constant
C.
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