
Online learning of eigenvectors

A brief survey of recent advancements

Bhuvesh Kumar

May 2, 2018

Georgia Institute of Technology

Table of contents

1. Introduction

2. Matrix multiplicative weight update

3. Follow the Perturbed Leader

4. Follow the compressed leader

1

Introduction

Problem Formulation

We are considering the matrix generalization of the 2 player zero sum
game where the loss matrix is a psd or nsd matrix

General framework

Algorithm 1 Online Learning: Matrix Loss

1: for t = 1, 2, . . . ,T do
2: Player plays unit vector vt ∈ Sd−1

3: Adversary reveals a symmetric reward matrix At s.t 0 � At � 1
4: Player receives a reward vT

t Atvt = At · vtvT
t

5: end for

2

Regret

As in most online learning frameworks, the goal is to minimize regret, i.e.
minimize the difference between the gain by the player and the gain by a
posteriori best fixed strategy u

Regret minimzation objective

minimize max
u∈Rd

T∑
t=1

At ·
(
uut − vtv

T
t

)
= λmax

(
T∑
t=1

At

)
−

T∑
t=1

vT
t Atvt

It is evident the best fixed strategy is the eigenvector corresponding to
λmax

(∑T
t=1 At

)
3

Expected Regret

Since many online learning expert style algorithms use some kind of
randomness i.e. vt is selected from a distribution D over Sn−1, we care
about expected regret.

Expected regret minimzation

minimize λmax

(
T∑
t=1

At

)
−

T∑
t=1

At · E
[
vtv

T
t

]
= λmax

(
T∑
t=1

At

)
−

T∑
t=1

At · Pt

Where Pt = E
[
v tvT

t

]
is the density matrix. It is psd and has trace 1.

4

Relevance

Top eigenvector computaion of symmetric matrices is a primitive problem
in machine learning theory and the online variant of the problem holds
importance too. In particular, this problem finds application in:

• Efficient algorithms for semidefinite programming. [5]

• Online max-cut problem [8]

• Ramanujam Sparsifiers

• Derandomising expander graphs

• Density matrices crop up in Quantum computing

5

Matrix multiplicative weight
update

Matrix multiplicative weight update

Matrix multiplicative weights update (MMWU) [5] [11] is the
generalizing of the multiplicative weights algorithm [4].

Matrix Multiplicative weight update

Algorithm 2 Matrix Multiplicative weight update

1: Fix η
2: for t = 1, 2, . . . ,T do
3: Wt ← exp

(
η
∑t−1

i=1 Ai

)
4: Density matrix Pt ← Wt

tr(Wt)

5: Either play Pt =
∑d

j=1 pj · yjyT
j or play yj with prob pj

6: end for

6

Guarantees

Total Regret
The theoretical best choice for η in Matrix multiplicative weights
update (MMWU) is η =

√
log d/T which gives a total expected regret

of O(
√
T log d)[10].

Per Iteration cost

Since, we need to compute the full SVD for
∑t−1

i=1 Ai , per iteration
running time is at least O(dω) and can also be up to d3 if there are
repeated eigenevalues.

Total time to get ε average regret

Õ
(
dω

ε2

)

7

More Comments

MMWU can also be derived from mirror descent where the Bregman
divergence is the quantum relative entropy divergence. [11] [2]

It was also shown in [2] that MMWU can be recovered from from FTRL
with the appropriate regulariser just like like MWU can be recovered from
FTRL with negative entropy regularization [7].

8

Follow the Perturbed Leader

Follow the Perturbed Leader

FTPL [6] is also the generalization of FTPL [9] in the vector loss setting
to the matrix loss setting.

Follow the Perturbed Leader

Algorithm 3 Follow the Perturbed Leader

1: Input D over Md

2: Sample N ∼ D
3: v1 = Top Eigenvector (N)
4: for t = 1, 2, . . . ,T do
5: Play vt
6: Observe At

7: vt+1 ← Top Eigenvector
(∑t

i=1 Ai + N
)

8: end for

Here Md is the linear space of all real symmetric d × d matrices.
9

Guarantees

Total Regret

If the noise N is sampled as c · xxT where c is a parameter and entries
of v are sampled i.i.d fron N (0, 1), then the total expected regret of
FTPL is O(

√
Td)[6].

Per Iteration cost
Since we need to compute the top eigenvector upto some accuracy, it
can be done in time Õ(min

{
T 3/4d−1/4nnz(

∑t
i=1 Ai)), dω

}
which is

better than MMWU.

Total time to get ε average regret

Since we have an extra
√
d in the regret, we need Õ

(
d1.5nnz(Σ)

ε3.5

)
total

time

10

Follow the compressed leader

Follow the compressed Leader

FTCL[1] is a compression of MMWU to a constant dimension of 3.

Follow the Compressed Leader

Algorithm 4 Follow the Compressed Leader

1: Input η, q
2: for t = 1, 2, . . . ,T do
3: Sample u1, u2, u3, each index iid from N (0, 1).
4: Ut ← 1

3

(
u1u

t
1 + u2u

T
2 + u3u

T
3
)

5: Σt ←
∑t−1

i=1 At

6: Define Xt = (ct I − ηΣt)
−q s.t. Tr(XtUt) = 1 and ct I − ηΣt � 0

7: Compute X
1/2
t UtX

1/2
t =

∑3
j=1 pjyjy

T
j

8: Play yj with prob pj
9: end for

11

Discussion

The compression requires minimum 3 dimensions because the regret
analysis is dependent on expected mean of 1/ |Ui i | and we know that if
x1, · · ·x k are sampled iid from N (0, 1) then 1∑k

i=1 x2
i

is an inverse
chi-squared distribution and the expectation of this variable if bounded
for k ≥ 3.

12

Implementation overview

The theoretical choice of q is Θ (log (dT)) and for η is log−3(dT)√
λmax(ΣT)

, but

eta is mostly fine tuned.

The major steps in the algorithm are

• Finding ct: ct is calculated using a binary search

• Calculating (ct I − ηΣt)
−q/2 uj for j ∈ [3]: This is needed so that

the SVD X
1/2
t UtX

1/2
t =

∑3
j=1 pjyjy

T
j can be done in O(d). This

can actually be solved by using a convex optimization routine like
gradient descent or Nesterov’s acceleration or by SVRG [3] where
the time taken is similar to solving a linear system of equations, q/2
times, here q/2 only adds a poly log factor.

13

Guarantees

Total Regret
Setting appropriate value of η and q, the total expected regret of FTCL
is Õ

(√
T
)
[1].

Per Iteration cost
We need to solve a linear system of equations poly log times which can
be done in Õ

(
min

{
min

{
T 1/4, d

}
nnz(ΣT), dω

})
which is better than

MMWU and not worse than FTPL.

Total time to get ε average regret

Õ
(

nnz(Σ)
ε2.5

)

14

Questions?

14

References i

Z. Allen-Zhu and Y. Li.
Follow the compressed leader: Faster online learning of
eigenvectors and faster mmwu.
In International Conference on Machine Learning, pages 116–125,
2017.

Z. Allen-Zhu, Z. Liao, and L. Orecchia.
Spectral sparsification and regret minimization beyond matrix
multiplicative updates.
In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 237–245. ACM, 2015.

15

References ii

Z. Allen-Zhu and Y. Yuan.
Improved svrg for non-strongly-convex or sum-of-non-convex
objectives.
In International conference on machine learning, pages 1080–1089,
2016.

S. Arora, E. Hazan, and S. Kale.
The multiplicative weights update method: a meta-algorithm
and applications.
Theory of Computing, 8(1):121–164, 2012.

S. Arora and S. Kale.
A combinatorial, primal-dual approach to semidefinite
programs.
In Proceedings of the thirty-ninth annual ACM symposium on
Theory of computing, pages 227–236. ACM, 2007.

16

References iii

D. Garber, E. Hazan, and T. Ma.
Online learning of eigenvectors.
In ICML, pages 560–568, 2015.

E. Hazan.
10 the convex optimization approach to regret minimization.
Optimization for machine learning, page 287, 2012.

E. Hazan, S. Kale, and S. Shalev-Shwartz.
Near-optimal algorithms for online matrix prediction.
In Conference on Learning Theory, pages 38–1, 2012.

A. Kalai and S. Vempala.
Efficient algorithms for online decision problems.
Journal of Computer and System Sciences, 71(3):291–307, 2005.

17

References iv

L. Orecchia.
Fast approximation algorithms for graph partitioning using
spectral and semidefinite-programming techniques.
University of California, Berkeley, 2011.

K. Tsuda, G. Rätsch, and M. K. Warmuth.
Matrix exponentiated gradient updates for on-line learning and
bregman projection.
Journal of Machine Learning Research, 6(Jun):995–1018, 2005.

18

	Introduction
	Matrix multiplicative weight update
	Follow the Perturbed Leader
	Follow the compressed leader

