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Introduction



Problem Formulation

We are considering the matrix generalization of the 2 player zero sum
game where the loss matrix is a psd or nsd matrix

General framework

Algorithm 1 Online Learning: Matrix Loss

1: for t = 1, 2, . . . ,T do
2: Player plays unit vector vt ∈ Sd−1

3: Adversary reveals a symmetric reward matrix At s.t 0 � At � 1
4: Player receives a reward vT

t Atvt = At · vtvT
t

5: end for
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Regret

As in most online learning frameworks, the goal is to minimize regret, i.e.
minimize the difference between the gain by the player and the gain by a
posteriori best fixed strategy u

Regret minimzation objective

minimize max
u∈Rd

T∑
t=1

At ·
(
uut − vtv

T
t

)
= λmax

(
T∑
t=1

At

)
−

T∑
t=1

vT
t Atvt

It is evident the best fixed strategy is the eigenvector corresponding to
λmax

(∑T
t=1 At

)
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Expected Regret

Since many online learning expert style algorithms use some kind of
randomness i.e. vt is selected from a distribution D over Sn−1, we care
about expected regret.

Expected regret minimzation

minimize λmax

(
T∑
t=1

At

)
−

T∑
t=1

At · E
[
vtv

T
t

]
= λmax

(
T∑
t=1

At

)
−

T∑
t=1

At · Pt

Where Pt = E
[
v tvT

t

]
is the density matrix. It is psd and has trace 1.
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Relevance

Top eigenvector computaion of symmetric matrices is a primitive problem
in machine learning theory and the online variant of the problem holds
importance too. In particular, this problem finds application in:

• Efficient algorithms for semidefinite programming. [5]

• Online max-cut problem [8]

• Ramanujam Sparsifiers

• Derandomising expander graphs

• Density matrices crop up in Quantum computing
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Matrix multiplicative weight update

Matrix multiplicative weights update (MMWU) [5] [11] is the
generalizing of the multiplicative weights algorithm [4].

Matrix Multiplicative weight update

Algorithm 2 Matrix Multiplicative weight update

1: Fix η
2: for t = 1, 2, . . . ,T do
3: Wt ← exp

(
η
∑t−1

i=1 Ai

)
4: Density matrix Pt ← Wt

tr(Wt)

5: Either play Pt =
∑d

j=1 pj · yjyT
j or play yj with prob pj

6: end for
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Guarantees

Total Regret
The theoretical best choice for η in Matrix multiplicative weights
update (MMWU) is η =

√
log d/T which gives a total expected regret

of O(
√
T log d)[10].

Per Iteration cost

Since, we need to compute the full SVD for
∑t−1

i=1 Ai , per iteration
running time is at least O(dω) and can also be up to d3 if there are
repeated eigenevalues.

Total time to get ε average regret

Õ
(
dω

ε2

)
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More Comments

MMWU can also be derived from mirror descent where the Bregman
divergence is the quantum relative entropy divergence. [11] [2]

It was also shown in [2] that MMWU can be recovered from from FTRL
with the appropriate regulariser just like like MWU can be recovered from
FTRL with negative entropy regularization [7].
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Follow the Perturbed Leader

FTPL [6] is also the generalization of FTPL [9] in the vector loss setting
to the matrix loss setting.

Follow the Perturbed Leader

Algorithm 3 Follow the Perturbed Leader

1: Input D over Md

2: Sample N ∼ D
3: v1 = Top Eigenvector (N)
4: for t = 1, 2, . . . ,T do
5: Play vt
6: Observe At

7: vt+1 ← Top Eigenvector
(∑t

i=1 Ai + N
)

8: end for

Here Md is the linear space of all real symmetric d × d matrices.
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Guarantees

Total Regret

If the noise N is sampled as c · xxT where c is a parameter and entries
of v are sampled i.i.d fron N (0, 1), then the total expected regret of
FTPL is O(

√
Td)[6].

Per Iteration cost
Since we need to compute the top eigenvector upto some accuracy, it
can be done in time Õ(min

{
T 3/4d−1/4nnz(

∑t
i=1 Ai )), dω

}
which is

better than MMWU.

Total time to get ε average regret

Since we have an extra
√
d in the regret, we need Õ

(
d1.5nnz(Σ)

ε3.5

)
total

time
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Follow the compressed Leader

FTCL[1] is a compression of MMWU to a constant dimension of 3.

Follow the Compressed Leader

Algorithm 4 Follow the Compressed Leader

1: Input η, q
2: for t = 1, 2, . . . ,T do
3: Sample u1, u2, u3, each index iid from N (0, 1).
4: Ut ← 1

3

(
u1u

t
1 + u2u

T
2 + u3u

T
3
)

5: Σt ←
∑t−1

i=1 At

6: Define Xt = (ct I − ηΣt)
−q s.t. Tr(XtUt) = 1 and ct I − ηΣt � 0

7: Compute X
1/2
t UtX

1/2
t =

∑3
j=1 pjyjy

T
j

8: Play yj with prob pj
9: end for
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Discussion

The compression requires minimum 3 dimensions because the regret
analysis is dependent on expected mean of 1/ |Ui i | and we know that if
x1, · · ·x k are sampled iid from N (0, 1) then 1∑k

i=1 x2
i

is an inverse
chi-squared distribution and the expectation of this variable if bounded
for k ≥ 3.
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Implementation overview

The theoretical choice of q is Θ (log (dT )) and for η is log−3(dT )√
λmax(ΣT )

, but

eta is mostly fine tuned.

The major steps in the algorithm are

• Finding ct: ct is calculated using a binary search

• Calculating (ct I − ηΣt)
−q/2 uj for j ∈ [3]: This is needed so that

the SVD X
1/2
t UtX

1/2
t =

∑3
j=1 pjyjy

T
j can be done in O(d). This

can actually be solved by using a convex optimization routine like
gradient descent or Nesterov’s acceleration or by SVRG [3] where
the time taken is similar to solving a linear system of equations, q/2
times, here q/2 only adds a poly log factor.
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Guarantees

Total Regret
Setting appropriate value of η and q, the total expected regret of FTCL
is Õ

(√
T
)
[1].

Per Iteration cost
We need to solve a linear system of equations poly log times which can
be done in Õ

(
min

{
min

{
T 1/4, d

}
nnz(ΣT ), dω

})
which is better than

MMWU and not worse than FTPL.

Total time to get ε average regret

Õ
(

nnz(Σ)
ε2.5

)
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Questions?
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