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Introduction



Problem Formulation

We are considering the matrix generalization of the 2 player zero sum
game where the loss matrix is a psd or nsd matrix

General framework

Algorithm 1 Online Learning: Matrix Loss

1: fort=1,2,..., T do

2: Player plays unit vector v; € S9!

3: Adversary reveals a symmetric reward matrix A; st 0 < A; <1
4: Player receives a reward v,/ A;v; = A; - vpv,|

5. end for




As in most online learning frameworks, the goal is to minimize regret, i.e.
minimize the difference between the gain by the player and the gain by a
posteriori best fixed strategy u

T

minimize max E A - (uu® — vtvtT)
ueRd o

T T
— )\max (Z At) — Z VtTAtVt
t=1 t=1

It is evident the best fixed strategy is the eigenvector corresponding to
T
)\max (Zt:l At)



Expected Regret

Since many online learning expert style algorithms use some kind of
randomness i.e. v; is selected from a distribution D over S"~1, we care
about expected regret.

t=1

T T
minimize Amax (Z At> — ZAt . E[vtvtT]

Where P; = E[vtvﬂ is the density matrix. It is psd and has trace 1.



REEVET

Top eigenvector computaion of symmetric matrices is a primitive problem
in machine learning theory and the online variant of the problem holds
importance too. In particular, this problem finds application in:

e Efficient algorithms for semidefinite programming. [5]

e Online max-cut problem [8]

e Ramanujam Sparsifiers

e Derandomising expander graphs

Density matrices crop up in Quantum computing



Matrix multiplicative weight
update



Matrix multiplicative weight update

Matrix multiplicative weights update (MMWU) [5] [11] is the
generalizing of the multiplicative weights algorithm [4].

Matrix Multiplicative weight update

Algorithm 2 Matrix Multiplicative weight update

. Fix n

:fort=1,2,...,T do

W,  exp (17 i Ai)
Density matrix P; tr(Wivf/t)

w N =

»

Either play P; = 27:1 pj -yjij or play y; with prob p;
6: end for

e




Guarantees

Total Regret

The theoretical best choice for 77 in Matrix multiplicative weights
update (MMWU) is = +/log d/ T which gives a total expected regret
of O(+/T log d)[10].

Per lteration cost

Since, we need to compute the full SVD for Zf;ll A;, per iteration
running time is at least O(d“) and can also be up to d? if there are
repeated eigenevalues.



More Comments

MMWU can also be derived from mirror descent where the Bregman
divergence is the quantum relative entropy divergence. [11] [2]

It was also shown in [2] that MMWU can be recovered from from FTRL
with the appropriate regulariser just like like MWU can be recovered from
FTRL with negative entropy regularization [7].
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Follow the Perturbed Leader

FTPL [6] is also the generalization of FTPL [9] in the vector loss setting
to the matrix loss setting.

Follow the Perturbed Leader

Algorithm 3 Follow the Perturbed Leader

1: Input D over My

2: Sample N ~ D

3: vy = Top Eigenvector (V)

4 fort=1,2,..., T do

5: Play v;

6 Observe A;

7 Ver1 < Top Eigenvector (Zle Ai + N)
8: end for

Here My is the linear space of all real symmetric d x d matrices.



Guarantees

Total Regret

If the noise N is sampled as ¢ - xx” where c is a parameter and entries
of v are sampled i.i.d fron A/(0,1), then the total expected regret of
FTPL is O(V/Td)[6].

Per lteration cost

Since we need to compute the top eigenvector upto some accuracy, it
can be done in time O(min { T3/4d~Y4nnz(3>¢_, A)), d*} which is
better than MMWU.

~ 1.5
Since we have an extra v/d in the regret, we need O (d;i"sz(zv total
time
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Follow the compressed leader




Follow the compressed Leader

FTCL[1] is a compression of MMWU to a constant dimension of 3.

Follow the Compressed Leader

Algorithm 4 Follow the Compressed Leader

1: Input 7, q

2. fort=1,2,..., T do

3: Sample u1, Ua, us, each index iid from N(0, 1).

4 U + (ulul + wpu] + usug )

5 Y Zlel A;

6: Define X; = (c:/ —nX;) 7 s.t. Tr(XtUt) =1land ¢/ —nX; =0
7 Compute Xl/zUt 1/2 _ Z, lprJyJ

8: Play y; with prob p;

9: end for
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Discussion

The compression requires minimum 3 dimensions because the regret
analysis is dependent on expected mean of 1/ |U;i| and we know that if

X1, x k are sampled iid from A/(0,1) then ﬁ is an inverse
chi-squared distribution and the expectation of this variable if bounded
for k > 3.
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Implementation overview

log—3(dT)

max T)

The theoretical choice of g is © (log (dT)) and for 7 is , but

eta is mostly fine tuned.

The major steps in the algorithm are

e Finding c;: ¢ is calculated using a binary search

e Calculating (¢;/ — nX: )7‘7/2 uj forj € [3]: This is needed so that
the SVD X1/2Ut 12 = ZJ lpjyjyj can be done in O(d). This
can actually be solved by using a convex optimization routine like
gradient descent or Nesterov's acceleration or by SVRG [3] where
the time taken is similar to solving a linear system of equations, q/2

times, here q/2 only adds a poly log factor.
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Guarantees

Total Regret
Setting appropriate value of 1 and g, the total expected regret of FTCL

is O (ﬁ) [1].

Per Iteration cost

We need to solve a linear system of equations poly log times which can
be done in O (min {min { TY/%,d} nnz(X1),d*}) which is better than
MMWU and not worse than FTPL.

0 (=)
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Questions?
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