

SUMMARY

We consider the classical problem of multiclass prediction with expert advice, but with an active learning twist. The learner aims to minimize regret while querying the labels of only a small number of examples; the learner is also allowed a very short *burn-in* phase where it can fast-forward and query certain highly-informative examples. We design ActiveHedge, that utilizes Hedge as a subroutine, and show that under a very particular combinatorial constraint (which we refer as ζ Compactness) on the matrix of expert predictions, we can obtain a very strong regret guarantee while querying very few labels.

PREDICTION WITH EXPERT ADVICE

Sequential classification of M points into K classes using advice from N experts

For $t = 1, \cdots, M$:

- 1. Receive advice $X_t \in [K]^N$
- 2. Predict label $\hat{y}_t \in \Delta_K$
- 3. Query true label y_t
- 4. Suffer loss $\ell(\hat{y}_t, y_t) := \frac{1}{2} \|\hat{y}_t y_t\|_1$

Regret

$$\operatorname{ReG}_{\operatorname{alg}} := \sum_{t=1}^{M} \ell(\hat{y}_t, y_t) - \min_{j \in [N]} \sum_{t=1}^{M} \ell(X_{t,j}, y_t).$$

Hedge

In round *t*, Hedge weigh's each expert *j*'s advice by $w_{t,j}$,

$$w_{t,j} \propto \exp\left(-\eta \sum_{t'=1}^{t} \ell(X_{t',j}, y_{t'})\right)$$

Theorem 2 (Freund and Schapire [1995]). *Give L*^{*} such that $\min_{j \in [N]} \sum_{t=1}^{M} \ell(X_{t,j}, y_t) \le L^*$, then, choosing $\eta = \log (1 + 1)$ $\sqrt{\frac{2\ln N}{L^*}}$

 $\operatorname{Re}_{Hedge} \leq \sqrt{2L^* \ln N} + \ln N$

ACTIVE LEARNING

Unlike supervised learning, the learner starts with unlabeled pool of actively chooses and requests labels for the most informative points

ACTIVEHEDGE: HEDGE MEETS ACTIVE LEARNING

{Bhuvesh Kumar, Jacob Abernethy} @ Georgia Tech, Venkatesh Saligrama @ Boston University

ACTIVE ONLINE LEARNING

Active twist to the learning with expert. It's the Hedge setting, but with three key modifications:

- 1. Expert predictions, **X** is known
- 2. The learner aims to make only a small number of label queries, limiting the number of times y_t is observed.
- 3. We allow a very brief *burn-in* phase, where the learner can *fast-forward* to act on particular examples , and query their labels, out of turn.

	1	2	3	4	5	6	7	8	9		y
1	1	0	0	1	1	1	1	1	0	↑	
2	1	1	0	0	0	0	0	0	1		
3	0	0	0	1	1	0	1	0	1		
4	1	0	0	1	0	0	1	0	0		
5	1	0	1	1	1	1	1	1	0		
6	1	1	1	1	1	1	0	1	0		
7	0	0	1	0	1	1	1	0	1		
8	0	0	1	1	1	1	0	1	0		

Burn-in Phase

ζ - COMPACTNESS

Measures the active learnability of expert prediction matrix X

For any subset $V \subseteq [N]$ of experts, the points of contention of V is

 $POC_{\mathbf{X}}(V) := \{ i \in [M] \mid \exists j, j' \in V : X_{i,j} \neq X_{i,j'} \}$

Definition 1 (ζ - Compactness). An expert prediction matrix **X** is ζ -compact if for all $V \subset [N]$ with $|V| \geq 2$,

		-	ma	$\overline{\operatorname{ax}_j}$;,j'	$\frac{ \operatorname{POC}_{\mathbf{X}}(V) }{\in V \operatorname{POC}_{\mathbf{X}}(\{j, j\}) }$	·})	\leq	ζ
	1	2	3	4	5			1	2
	1	1	1	1	1		1	0	0
2	1	1	1	1	0		2	0	0
	1	1	1	0	0		3	0	0

	1	2	3	4	5
1	0	0	0	0	1
2	0	0	0	1	0
3	0	0	1	0	0
4	0	1	0	0	0
5	1	0	0	0	0

Large set of contentions imply large pairwise contentions also, more actively learnable, small ζ

1000

10000

Large set of contentions made by similar experts, less actively learnable, **larger** ζ

Usually ζ is a small constant

Theorem 3 (Informal). *There is a poly time algorithm to cal*culate the compactness ζ of a matrix up to an approximation factor of 3.

	1	2	3	4	5	6	7	8	9	y _t
5	1	0	1	1	1	1	1	1	0	1
8	0	0	1	1	1	1	0	1	0	0
1	1	0	0	1	1	1	1	1	0	
2	1	1	0	0	0	0	0	0	1	
3	0	0	0	1	1	0	1	0	1	1
4	1	0	0	1	0	0	1	0	0	
6	1	1	1	1	1	1	0	1	0	0
7	0	0	1	0	1	1	1	0	1	

Second Phase

ACTIVEHEDGE

Burn-in Phase

- Maintain a set of candidate experts V^{τ}
- Select k points from $POC_{\mathbf{X}}(V)$
- Predict labels using Hedge and request labels
- Shrink V^{τ}
- Repeat T times

Burn in Phase: Actively selecting informative points

Regret and Label Complexity

Theorem 1. Given a ζ -compact matrix **X** such that $\min_{j\in[N]}\sum_{t=1}^M \ell(X_{t,j}, y_t) \leq L^* = \epsilon M$, with probability at *least* $1 - \rho$, for ActiveHedge

1. *the number labels queried is no more than*

$$O\left(\zeta \log\left(\frac{N}{\rho}\log\frac{1}{10\epsilon\zeta}\right)\log\frac{1}{10\epsilon\zeta} + \epsilon\zeta M\right)$$

2. the length of Phase I is no more than $\tilde{O}(\zeta)$ rounds; 3. and finally we have that

 $\operatorname{ReG}_{\operatorname{ActiveHedge}} \leq \sqrt{2\epsilon M \ln N} + \ln N$

Same regret as Hedge using only $\tilde{O}(\zeta L^*)$ labels (as compared to *M* labels for Hedge)

REFERENCES

Nicolo Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Minimizing regret with label efficient prediction. IEEE Transactions on *Information Theory*, 51(6):2152–2162, 2005.

Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and an application to boosting. In European conference on computational learning theory, pages 23–37. Springer, 1995.

Second Phase

- Sequentially go through remaining points
- Predict using Hedge and request label if point in $POC_{\mathbf{X}}(V)$
- Otherwise predict using any expert in V^{τ}

Burn in Phase: Actively selecting informative points

PRELIMINARY EXPERIMENTS

We consider three different classes of experts for our experiments.

- In a) we consider linear classifiers passing through the origin as experts
- In b) we consider multidimensional experts as thresholds
- in c) we consider identity like matrix

We compare ActiveHedge with Hedge (Freund and Schapire [1995]) and the label efficient learner of [Cesa-Bianchi et al., 2005] (referred as CL05)

Labels queried and the cumulative mistakes of Active-Hedge, Hedge, and Cesa-Bianchi et al. [2005](CL05) in 3 different settings

