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SUMMARY
We consider the classical problem of multiclass prediction
with expert advice, but with an active learning twist. The
learner aims to minimize regret while querying the labels
of only a small number of examples; the learner is also al-
lowed a very short burn-in phase where it can fast-forward
and query certain highly-informative examples. We de-
sign ActiveHedge, that utilizes Hedge as a subroutine,
and show that under a very particular combinatorial con-
straint (which we refer as ζ Compactness) on the matrix
of expert predictions, we can obtain a very strong regret
guarantee while querying very few labels.

ACTIVE ONLINE LEARNING
Active twist to the learning with expert. It’s the Hedge
setting, but with three key modifications:

1. Expert predictions, X is known
2. The learner aims to make only a small number of label

queries, limiting the number of times yt is observed.
3. We allow a very brief burn-in phase, where the learner

can fast-forward to act on particular examples , and
query their labels, out of turn.

Burn-in Phase Second Phase

ACTIVEHEDGE

Burn-in Phase

• Maintain a set of candidate experts V τ

• Select k points from POCX(V )

• Predict labels using Hedge and request labels
• Shrink V τ

• Repeat T times

Burn in Phase: Actively selecting informative points

Second Phase

• Sequentially go through remaining points
• Predict using Hedge and request label if point in

POCX(V )

• Otherwise predict using any expert in V τ

Burn in Phase: Actively selecting informative points

ACTIVE LEARNING
Unlike supervised learning, the learner starts with unla-
beled pool of actively chooses and requests labels for the
most informative points
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REGRET AND LABEL COMPLEXITY
Theorem 1. Given a ζ-compact matrix X such that
minj∈[N ]

∑M
t=1 ℓ(Xt,j , yt) ≤ L∗ = ϵM , with probability at

least 1− ρ, for ActiveHedge

1. the number labels queried is no more than

O
(
ζ log

(
N
ρ log 1

10ϵζ

)
log 1

10ϵζ + ϵζM
)

2. the length of Phase I is no more than Õ(ζ) rounds;
3. and finally we have that

REGActiveHedge ≤
√
2ϵM lnN + lnN

Same regret as Hedge using only Õ(ζL∗) la-
bels (as compared to M labels for Hedge)

PRELIMINARY EXPERIMENTS

We consider three different
classes of experts for our
experiments.

• In a) we consider lin-
ear classifiers passing
through the origin as
experts

• In b) we consider
multidimensional ex-
perts as thresholds

• in c) we consider
identity like matrix

We compare ActiveHedge
with Hedge (Freund and
Schapire [1995]) and the
label efficient learner of
[Cesa-Bianchi et al., 2005]
(referred as CL05)
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Labels queried and the cu-
mulative mistakes of Active-
Hedge, Hedge, and Cesa-
Bianchi et al. [2005](CL05) in 3
different settings

PREDICTION WITH EXPERT ADVICE
Sequential classification of M points into K classes using
advice from N experts

For t = 1, · · · ,M :
1. Receive advice Xt ∈ [K]N

2. Predict label ŷt ∈ ∆K

3. Query true label yt
4. Suffer loss ℓ(ŷt, yt) := 1

2∥ŷt − yt∥1

Regret

REGalg :=
M∑
t=1

ℓ(ŷt, yt)− min
j∈[N ]

M∑
t=1

ℓ(Xt,j , yt).

Hedge
In round t, Hedge weigh’s each expert j’s advice by wt,j ,

wt,j ∝ exp

(
−η

t∑
t′=1

ℓ(Xt′,j , yt′)

)

Theorem 2 (Freund and Schapire [1995]). Give L∗ such that
minj∈[N ]

∑M
t=1 ℓ(Xt,j , yt) ≤ L∗, then, choosing η = log

(
1 +√

2 lnN
L∗

)
REGHedge ≤

√
2L∗ lnN + lnN

ζ - COMPACTNESS
Measures the active learnability of expert prediction ma-
trix X
For any subset V ⊆ [N ] of experts, the points of contention
of V is

POCX(V ) := {i ∈ [M ] | ∃j, j′ ∈ V : Xi,j ̸= Xi,j′}

Definition 1 (ζ- Compactness). An expert prediction matrix
X is ζ-compact if for all V ⊂ [N ] with |V | ≥ 2,

|POCX(V )|
maxj,j′∈V |POCX({j, j′})|

≤ ζ

Large set of contentions im-
ply large pairwise contentions
also, more actively learnable,
small ζ

Large set of contentions made
by similar experts, less ac-
tively learnable, larger ζ

Usually ζ is a small constant

Theorem 3 (Informal). There is a poly time algorithm to cal-
culate the compactness ζ of a matrix up to an approximation
factor of 3.


